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Abstract. Deep-inelastic scattering at low x and elastic vector meson electroproduction are analyzed on
the basis of the s-channel unitarity extended to off-shell particle scattering. It appeared that the role of
unitarity is important, but contrary to the case of on-shell scattering it does not rule out a power-like
behavior of the total cross sections. We discuss the behavior of the total cross section of virtual photon–
proton scattering in the geometrical approach and obtain the result that the exponent of the power-like
energy dependence of σtot

γ∗p is related to the constituent quark interaction radius. The mass effects and
energy dependence of vector meson electroproduction are discussed along with the angular distributions
at large momentum transfers in these processes.

Introduction

The increasing dependence of the virtual photon–proton
scattering total cross section on the center of mass energy
W 2 discovered at HERA [1] led to renewed interest in the
mechanism of diffraction at high energies. Such a behavior
was in fact predicted in [2] and expected in perturbative
QCD [3]. The total virtual photon–proton cross section is
related to the structure function F2 at small x. The HERA
effect is consistent with various W 2-dependences of σtot

γ∗p

and has been explained in different ways; among them is to
take it as the manifestation of a hard BFKL pomeron [4],
the appearance of DGLAP evolution in perturbative QCD
[3], transient phenomena, i.e. pre-asymptotic effects [5] or
a true asymptotical off-mass shell scattering amplitude
behavior [6]. There is an extensive list of papers devoted
to this subject and many interesting results are described
in review papers (cf. e.g. [1,7]). The strong increase of the
structure function F2 at small x which can be described
by a power-like dependence1 F2(x,Q2) ∝ x−λ(Q2) implies
that

σtot
γ∗p(W

2, Q2) ∝ (W 2)λ(Q2), (1)

1 The most recent results of the H1 Collaboration [8] con-
firmed an x-independence of the exponent λ at low x by mea-
suring the derivative

(
∂ lnF2(x, Q2)/∂ lnx

)
Q2 as a function

both of Q2 and of x for the first time. Some provisions against
this independence were mentioned in [9]; moreover, there are
also other parameterizations which describe the experimental
data equally well (cf. e.g. [10]). Despite that, it seems that the
parameterization (1) provides the most natural way to approx-
imate the available experimental data

with λ(Q2) increasing with Q2 from about 0.1 to about
0.5, and this is regarded as a somewhat surprising fact.
It is due to the fact that according to the experimental
data on the energy dependence of the total cross sections
in hadronic interactions, the total cross section increase
is rather slow (λ ∼ 0.1). The mentioned variance may be
regarded to be not a fundamental one. First, there is no
Froissart–Martin bound for the case of off-shell particles
[2,6]. Additional assumptions are needed to reinstate this
bound [11,12]. Second, it cannot be taken for granted that
the pre-asymptotic effects and the approach to the asymp-
totics are the same for the on-shell and off-shell scattering.
It seems that, for some reasons, scattering of virtual par-
ticles reaches the asymptotics faster than the scattering
of the real particles.

It is worth noting that the space-time structure of the
low-x scattering involves large distances l ∼ 1/mx on the
light-cone [13], and the region of x ∼ 0 is sensitive to
non-perturbative contributions. Deep-inelastic scattering
in this region turns out to be a coherent process, where
diffraction plays a major role and non-perturbative models
such as a Regge or vector dominance model can be com-
petitive with perturbative QCD and successfully applied
for the description of the experimental data.

It is essential to obey the general principles in the non-
perturbative region and, in particular, to satisfy unitarity.
The most common form of the unitarity solution – the
eikonal one – was generalized for off-shell scattering in
[6]. In this paper we consider an off-shell extension of the
U -matrix approach to the amplitude unitarization. It is
shown that this approach along with the respective ex-
tension of the quark model for the U -matrix [14] leads
to (1), where the exponent λ(Q2) is related to the Q2-
dependent interaction radius attributed to the constituent
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quark. These results cannot be obtained in the eikonal
unitarization which reproduces a bare “Born” input form
with subleading corrections for the output amplitude in
the case of off-shell scattering [6]. The fundamental dis-
tinction between the two forms of amplitude unitariza-
tion lies in the analytical properties in the complex energy
plane [15].

It is worth noting the importance of the effective in-
teraction radius concept [16]. The study of the effective
interaction radius dependence on the scattering variables
appeared to be very useful for understanding the dynam-
ics of high energy hadronic reactions [17,18]. It is widely
known nowadays that the respective geometrical consid-
erations provide a deep insight in hadron dynamics and
deep-inelastic scattering (cf. [19]).

Besides the studies of deep-inelastic scattering (DIS)
at low x the measurements of the characteristics of the
elastic vector meson (VM) production were performed in
the H1 and ZEUS experiments at HERA [21,22]. It was
shown that the integral cross section of the elastic vector
meson production increases with energy in a way similar
to the σtot

γ∗p(W
2, Q2) dependence on W 2 [1]. It appeared

that an increase of the VM electroproduction cross section
with energy is steeper for heavier vector mesons as well
as when the virtuality Q2 is higher. A discussion of such
a behavior in various model approaches based on non-
perturbative hadron physics or perturbative QCD can be
found in, e.g., [7].

The application of the approach based on the off-shell
extension of the s-channel unitarity to elastic vector me-
son electroproduction γ∗p → V p allows one to obtain the
angular dependence and predict interesting mass effects
in these processes. It appears that the obtained mass and
Q2 dependences do not contradict the experimentally ob-
served trends. It is also valid for the angular distributions
at large momentum transfers.

1 Off-shell unitarity

An extension of the U -matrix unitarization scheme for the
off-shell scattering was considered briefly in [11]. Here we
give a more detailed treatment of this problem. We adopt
the commonly accepted picture of DIS at small x, i.e. it is
supposed that the virtual photon fluctuates into a quark–
antiquark pair qq̄ and this pair is considered as an effective
virtual vector meson state in processes with small x. This
effective virtual meson then interacts with a hadron. For
simplicity we consider a single effective vector meson field.
We use for the amplitudes of the processes

V ∗ + h → V ∗ + h, V ∗ + h → V + h and
V + h → V + h (2)

the notation F ∗∗(s, t,Q2), F ∗(s, t,Q2) and F (s, t), respec-
tively, i.e. we denoted in that way the amplitudes when
both initial and final mesons are off-mass shell, and only
the initial meson is off-mass shell and both mesons are
on-mass shell.

F** =F** = U** + i U* F*

Fig. 1. The solution of the off-shell unitarity relation for the
amplitude F ∗∗

F == + i U* FU*F*

Fig. 2. The solution of the off-shell unitarity relation for the
amplitude F ∗

The unitarity relation for the amplitudes F ∗∗ and F ∗
has a similar structure as the unitarity equation for the on-
shell amplitude F but relates, in fact, different amplitudes.
Therefore, the unitarity constraints in DIS are much less
stringent than in hadron–hadron scattering. In the impact
parameter representation at high energies it relates the
amplitudes F ∗∗ and F ∗ in the following way:

ImF ∗∗(s, b,Q2) = |F ∗(s, b,Q2)|2 + η∗∗(s, b,Q2), (3)

where η∗∗(s, b,Q2) is the contribution to the unitarity of
many-particle intermediate on-shell states. The function
η∗∗(s, b,Q2) is the sum of the n-particle production cross
section in the process of the virtual meson interaction with
a hadron h, i.e.

η∗∗(s, b,Q2) =
∑

n

σn(s, b,Q2).

There is a similar relation for the functions F ∗ and F :

ImF ∗(s, b,Q2) = F ∗(s, b,Q2)F (s, b,Q2) + η∗(s, b,Q2).
(4)

Contrary to η∗∗(s, b,Q2), the function η∗(s, b,Q2) has no
simple physical meaning, and it will be discussed later.
The solution of the off-shell unitarity relations are graphi-
cally represented for the amplitudes F ∗∗ and F ∗ in Figs. 1
and 2 respectively and has a simple form in the impact
parameter representation:

F ∗∗(s, b,Q2) = U∗∗(s, b,Q2)
+ iU∗(s, b,Q2)F ∗(s, b,Q2),

F ∗(s, b,Q2) = U∗(s, b,Q2)
+ iU∗(s, b,Q2)F (s, b). (5)

It is worth noting that the solution of the off-shell unitarity
in the non-relativistic case for a K-matrix representation
was obtained for the first time in [23]. The solution of this
system is

F ∗(s, b,Q2) =
U∗(s, b,Q2)
1 − iU(s, b)

=
U∗(s, b,Q2)

U(s, b)
F (s, b), (6)
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F ∗∗(s, b,Q2)

=
U∗∗(s, b,Q2)
1 − iU(s, b)

− i
U∗∗(s, b,Q2)U(s, b) − [U∗(s, b,Q2)]2

1 − iU(s, b)

=
U∗∗(s, b,Q2)

U(s, b)
F (s, b) − iU∗(s, b,Q2)

×
[
U∗∗(s, b,Q2)
U∗(s, b,Q2)

− U∗(s, b,Q2)
U(s, b)

]
F (s, b), (7)

where the on-shell amplitude F (s, b) has the following rep-
resentation:

F (s, b) = U(s, b)/[1 − iU(s, b)]. (8)

We assume the following relation to be valid at the level
of the “Born” amplitudes in the impact parameter space:

U∗

U
=

U∗∗

U∗ . (9)

This relation is valid, e.g. in the Regge model with factor-
izable residues and Q2-independent trajectory. It is also
valid in the off-shell extension of the chiral quark model
for the U -matrix which we will consider further. Equa-
tion (9) implies the following forms for the impact param-
eter dependent functions U∗ and U∗∗:

U∗(s, b,Q2) = ω(s, b,Q2)U(s, b),
U∗∗(s, b,Q2) = ω(s, b,Q2)U(s, b)ω(s, b,Q2). (10)

This factorization may be treated as a reflection of the
universality of the initial and final state interactions re-
sponsible for the transitions between the on- and off-mass
shell states. This seems to be a quite natural assumption.
Note that this factorization does not survive for the am-
plitudes F (s, t), F ∗(s, t,Q2) and F ∗∗(s, t,Q2), i.e. after a
Fourier–Bessel transform is performed.

Thus, we have for the amplitudes F ∗ and F ∗∗ the fol-
lowing relations:

F ∗(s, b,Q2) =
U∗(s, b,Q2)
1 − iU(s, b)

= ω(s, b,Q2)F (s, b), (11)

F ∗∗(s, b,Q2) =
U∗∗(s, b,Q2)
1 − iU(s, b)

= ω(s, b,Q2)F (s, b)ω(s, b,Q2), (12)

and unitarity provides the inequalities

|F ∗(s, b,Q2)| ≤ |ω(s, b,Q2)|,
|F ∗∗(s, b,Q2)| ≤ |ω2(s, b,Q2)|. (13)

It is worth noting that the above limitations are much less
stringent than the limitation for the on-shell amplitude
|F (s, b)| ≤ 1. As a result, there is no Froissart–Martin
bound in DIS at low x and the experimentally observed
power-like energy dependence of the total cross section
can represent a true asymptotical dependence.

When the function ω(s, b,Q2) is real, we can write
down a simple expression for the inelastic overlap func-
tion η∗∗(s, b,Q2):

η∗∗(s, b,Q2) = ω(s, b,Q2)
ImU(s, b)

|1 − iU(s, b)|2ω(s, b,Q
2). (14)

Fig. 3. Schematic view of initial stage of the hadron interaction
and formation of the effective field

The following relation is valid for the function η∗(s, b,Q2):

η∗(s, b,Q2) = [η∗∗(s, b,Q2)η(s, b)]1/2. (15)

Equation (15) allows one to connect the integral

Σ(s,Q2) ≡ 8π
∫ ∞

0
η∗(s, b,Q2)bdb

with the total inelastic cross section:

Σ(s,Q2)|Q2→0 = σinel(s).

2 Off-shell scattering and the quark model
for the U -matrix

The above formulas are rather general and are not use-
ful alone in an analysis of the data. We need an explicit
form for the functions U , U∗ and U∗∗ and therefore a phe-
nomenological model is to be constructed. As a starting
point we use the quark model for the hadron scattering
described in [14]. In this section we list the main features
and then construct an off-shell extension of the model.
In fact this is based on the ideas of chiral quark models.
The picture of the hadron structure in the model with va-
lence constituent quarks located in the central part and
a surrounding condensate implies that the overlapping of
hadron structures and the interaction of the condensates
occur at the first stage of the collision and results in gener-
ation of the quasi-particles, i.e. massive quarks (cf. Fig. 3).

These quarks play the role of scatterers. To estimate
the number of such quarks one could assume that part of
the hadron energy carried by the outer condensate clouds
is being released in the overlap region to generate mas-
sive quarks. Then their number can be estimated by the
quantity

Ñ(s, b) ∝ (1 − kQ)
√
s

mQ
Dh

c ⊗ DV
c , (16)

where mQ is the constituent quark mass, and kQ the
fraction hadron energy carried by the constituent valence
quarks. The function Dh

c describes the condensate distri-
bution inside the hadron h, and b is the impact parame-
ter of the colliding hadron h and meson V . Thus, Ñ(s, b)
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Fig. 4. Schematic view of the virtual constituent quark Q∗

scattering in the effective field generated byNsc(s, b) scatterers,
where Nsc(s, b) = Ñ(s, b) +N − 1

quarks appear in addition to N = nh+nV valence quarks.
Those quarks are transient ones: they are transformed
back into the condensates of the final hadrons in elastic
scattering. It should be noted that we use the subscript
Q to refer the constituent quark Q and the same letter Q
is used to denote the virtuality Q2. However, they enter
formulas in a way excluding confusion.

In this model the valence quarks located in the cen-
tral part of a hadron are supposed to scatter in a quasi-
independent way by the effective field. Due to the quasi-
independence of the valence quarks scatterings the basic
dynamical quantity (the function U) can be factorized.
When one of the hadrons (a vector meson in our case) is
off-mass shell, the corresponding function U∗∗(s, b,Q2) is
represented as the following product:

U∗∗(s, b,Q2) =
nh∏
i=1

〈fQi
(s, b)〉

nV∏
j=1

〈fQ∗
j
(s, b,Q2)〉. (17)

The factors 〈fQ(s, b)〉 and 〈fQ∗(s, b,Q2)〉 correspond to
the individual quark scattering amplitudes smeared over
the constituent quark transverse position and the fraction
of longitudinal momentum carried by this quark. By the
virtual constituent quarks Q∗ we mean the ones compos-
ing the virtual meson. The factorization (17) reflects the
coherence in the valence quark scattering, i.e. all valence
quarks are scattered in the effective field simultaneously
and there are no spectator valence quarks. This factor-
ization might be considered as an effective implementa-
tion of the constituent quarks’ confinement. The averaged
amplitudes 〈fQ(s, b)〉 and 〈fQ∗(s, b,Q2)〉 describe elastic
scattering of single valence on-shell or off-shell quarks Q
and Q∗, respectively, off the effective field (cf. Fig. 4). We
use for the function 〈fQ(s, b)〉 the following expression:

〈fQ(s, b)〉 = [Ñ(s, b) + (N − 1)]VQ(b), (18)

where VQ(b) has the simple form

VQ(b) ∝ g exp(−mQb/ξ),

which corresponds to the quark interaction radius

rQ = ξ/mQ.

The function 〈f∗
Q(s, b,Q

2)〉 is to be written

〈fQ∗(s, b,Q2)〉 = [Ñ(s, b) + (N − 1)]VQ∗(b,Q2). (19)

In the above equation

VQ∗(b,Q2) ∝ g(Q2) exp(−mQb/ξ(Q2)), (20)

and this form corresponds to the virtual constituent quark
interaction radius

rQ∗ = ξ(Q2)/mQ. (21)

The functions VQ(b) and VQ∗(b,Q2) in the model are as-
sociated with the “matter” distribution inside constituent
quarks and can be considered as strong formfactors.

Equations (18) and (19) imply that each valence quark
is being scattered by all other N−1 valence quarks belong-
ing to the same hadron as well as to the other hadron and
by Ñ(s, b) quarks produced by the excitation of the chiral
condensates. Due to the different radii the b-dependence
of Ñ(s, b) being weak compared to the b-dependence of
VQ or VQ∗ and this function can be approximately taken
to be independent on the impact parameter b. The depen-
dence on the virtuality Q2 comes through the dependence
of the intensity of the virtual constituent quark interac-
tion g(Q2) and the ξ(Q2), which determines the quark
interaction radius (in the on-shell limit g(Q2) → g and
ξ(Q2) → ξ).

The introduction of the Q2 dependence in the inter-
action radius of a constituent quark which in the present
approach consists of a current quark and a cloud of quark–
antiquark pairs of different flavors is the main issue of the
off-shell extension of the model, and the origin of this de-
pendence and its possible physical interpretation will be
discussed in Sect. 6.

According to these considerations the explicit func-
tional forms for the generalized reaction matrices U∗ and
U∗∗ can easily be written in the form of (10) with

ω(s, b,Q2) =
〈fQ∗(s, b,Q2)〉

〈fQ(s, b)〉
. (22)

Note that (9) and (10) imply that the amplitude of the
process Q∗ → Q is

〈fQ∗→Q(s, b,Q
2)〉 = [〈fQ∗(s, b,Q2)〉〈fQ(s, b)〉]1/2.

We consider the high-energy limit and for simplicity
assume here that all the constituent quarks have equal
masses and the parameters g and ξ as well as g(Q2) and
ξ(Q2) do not depend on quark flavor. We also assume pure
imaginary amplitudes. Then the functions U , U∗ and U∗∗
are the following:

U(s, b) = igN

(
s

m2
Q

)N/2

exp
[
−mQNb

ξ

]
, (23)

U∗(s, b,Q2) = ω(b,Q2)U(s, b),
U∗∗(s, b,Q2) = ω2(b,Q2)U(s, b), (24)

where the function ω is energy independent and has the
following dependence on b and Q2:

ω(b,Q2) =
g(Q2)

g
exp

[
− mQb

ξ̄(Q2)

]
, (25)
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with

ξ̄(Q2) =
ξξ(Q2)

ξ − ξ(Q2)
. (26)

3 Total cross sections of γ∗p interactions

With the explicit forms of the functions U , U∗ and U∗∗ the
corresponding scattering amplitudes can be calculated.
The most simple case is the forward scattering at large en-
ergies. For the on-shell scattering when ω → 1 at largeW 2,
the total photoproduction cross section has a Froissart-like
asymptotic behavior

σtot
γp (W

2) ∝ ξ2

m2
Q

ln2 W 2

m2
Q

, (27)

where the usual notation for DIS, W 2 instead of s, is used.
A similar result is valid also for the off-mass shell particles
if the interaction radius of virtual quark does not depend
on Q2 and is equal to the interaction radius of the on-
shell quark, i.e. ξ(Q2) ≡ ξ. The behavior of the total cross
section at large W 2 is given by

σtot
γ∗p(W

2) ∝
[
g(Q2)ξ
gmQ

]2
ln2 W 2

m2
Q

. (28)

We consider next the off-shell scattering and suppose
now that ξ(Q2) 
= ξ. It should be noted first that for the
case when ξ(Q2) < ξ the total cross section would be
energy independent,

σtot
γ∗p(W

2) ∝ C(Q2) ≡
[

g(Q2)ξ
gλ(Q2)mQ

]2
,

in the asymptotic region. This scenario would mean that
the experimentally observed increase of σtot

γ∗p is a transient
pre-asymptotic phenomenon. This can be realized when
we replace the mass mQ by the quantity mQ∗ = (m2

Q +
Q2)1/2 in order to obtain the interaction radius of the off-
shell constituent quark and write it down as rQ∗ = ξ/mQ∗ ,
or equivalently replace ξ by ξ(Q2) = ξmQ/(m2

Q +Q2)1/2.
The above option cannot be excluded in principle; how-
ever, it is a self-consistent choice in the framework of the
model only at large Q2 � m2

Q since it was originally sup-
posed that the function ξ is universal for the different
quark flavors.

However, when ξ(Q2) > ξ the situation is different and
we have at large W 2

σtot
γ∗p(W

2, Q2) ∝ G(Q2)

(
W 2

m2
Q

)λ(Q2)

ln
W 2

m2
Q

, (29)

where

λ(Q2) =
ξ(Q2) − ξ

ξ(Q2)
. (30)

We shall further concentrate on this self-consistent case
for any Q2 values and in the most interesting case.

All the above expressions for σtot
γ∗p(W

2) can be rewrit-
ten as the corresponding dependences of F2(x,Q2) at
small x according to the relation

F2(x,Q2) =
Q2

4π2α
σtot

γ∗p(W
2),

where x = Q2/W 2.
In particular, (29) will appear in the form

F2(x,Q2) ∝ G̃(Q2)
(
1
x

)λ(Q2)

ln(1/x). (31)

It is interesting that the value and Q2 dependence of
the exponent λ(Q2) is related to the interaction radius of
the virtual constituent quark. The value of the parameter
ξ in the model is determined by the slope of the differential
cross section of elastic scattering at large t [26], i.e.

dσ
dt

∝ exp
[
− 2πξ

mQN

√−t

]
, (32)

and from the pp experimental data it follows that ξ = 2.
Then from the data for λ(Q2) obtained at HERA [8] we
can calculate the “experimental” Q2-dependence of the
function ξ(Q2):

ξ(Q2) =
ξ

1 − λ(Q2)
. (33)

Evidently experiment indicates that ξ(Q2) increases with
Q2. This increase is slow and consistent with extrapolation
of lnQ2 (Fig. 5):

ξ(Q2) = ξ + a ln
(
1 +

Q2

Q2
0

)
,

where a = 0.172 and Q2
0 = 0.265GeV2. Assuming this

dependence for higher values ofQ2 and using (30), we then
predict saturation of λ(Q2) at large Q2, i.e. the following
flattening should take place:

λ(Q2) = a ln
(
1 +

Q2

Q2
0

)/[
ξ + a ln

(
1 +

Q2

Q2
0

)]
.

The increase of ξ(Q2) corresponds to the increasing inter-
action radius of the constituent quarks from the virtual
vector meson which is illustrated on Fig. 6.

4 Elastic vector meson production

The calculation of the elastic and inelastic cross sections
can also be directly performed similar to the calculation
of the total cross-sections using (23), (24) and (25) and
integrating the functions |F ∗(s, b,Q2)|2 and η∗∗(s, b,Q2)
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Fig. 5. The “experimental” behavior of the function ξ(Q2)

Q
2

Fig. 6. The increase with virtuality of the constituent quark
interaction radius

over the impact parameter. The following asymptotic de-
pendences for the cross sections of elastic scattering and
inelastic interactions are obtained in that way:

σel
γ∗p(W

2, Q2) ∝ Ge(Q2)

(
W 2

m2
Q

)λ(Q2)

ln
W 2

m2
Q

(34)

and

σinel
γ∗p(W

2, Q2) ∝ Gi(Q2)

(
W 2

m2
Q

)λ(Q2)

ln
W 2

m2
Q

, (35)

with the universal exponent λ(Q2) given by (30).
The above relations imply that the ratios of elastic and

inelastic cross sections to the total one do not depend on
energy. In order to confront these results with experimen-
tal data it is useful to keep in mind that, as was noted in
[20], diffraction of the virtual photon includes both elastic
and inelastic scattering of its fluctuations.

Now we consider elastic (exclusive) cross sections both
for the light and heavy vector mesons production. We as-
sumed earlier that the virtual photon before the interac-
tion with the proton fluctuates into a Q̄Q-pair and for
simplicity we limited ourselves to light quarks in the dis-
cussion of the total cross section. Therefore we need to
get rid of the light quark limitation and extend the above
approach in order to include the quarks with different
masses. The inclusion, in particular, of heavy vector meson
production into this scheme is straightforward: the virtual

photon fluctuates before the interaction with a proton into
the heavy quark–antiquark pair which constitutes the vir-
tual heavy vector meson state. After the interaction with
a proton this state becomes a real heavy vector meson.

The integral exclusive (elastic) cross section of vector
meson production in the process γ∗p → V p when the fi-
nal state vector meson contains not only light quarks can
be calculated directly according to the above scheme and
formulas of Sect. 2:

σV
γ∗p(W

2, Q2) ∝ GV (Q2)
(

W 2

mQ
2

)λV (Q2)

ln
W 2

mQ
2 , (36)

where

λV (Q2) = λ(Q2)
m̃Q

〈mQ〉 . (37)

In (37) m̃Q denotes the mass of the constituent quarks
from the vector meson and 〈mQ〉 is the mean constituent
quark mass of the vector meson and proton system. Evi-
dently λV (Q2) = λ(Q2) for the light vector mesons. In the
case when the vector meson is very heavy, i.e. m̃Q � mQ,
we have

λV (Q2) =
5
2
λ(Q2).

We conclude that the respective cross section increases
faster than the corresponding cross section of the light
vector meson production, e.g. (37) results in

λJ/Ψ (Q2) � 2λ(Q2).

The above results are in a qualitative agreement with the
trends observed in the HERA experiments [21,22].

5 Angular structure
of elastic vector meson production

Now we turn to a calculation of the scattering amplitudes
at t 
= 0. This will allow us to get a differential cross
section and to confront the results with the first mea-
surements of the angular distributions at large t in light
vector meson production [24]. It was found that the an-
gular distribution in the proton dissociative processes [25]
is consistent with the power dependence (−t)−3. A cal-
culation of the differential cross sections in elastic vector
meson production can be performed using the analysis of
the singularities of the amplitudes in the complex impact
parameter plane which was applied to elastic hadron scat-
tering in [26]. There are different approaches to the vector
meson production, e.g. the recent application of the geo-
metrical picture given in [27]. Angular distributions can
be described also in the approaches based on the pertur-
bative QCD [28–30] which provides a smooth power-like
t-dependence. A brief review of the recent results of these
approaches can be found in [31].

Since the integration in the Fourier–Bessel transform
goes over the variable b2 rather than b it is convenient
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Fig. 7. The singularities of the scattering amplitude in the
complex β-plane

to consider the complex plane of the variable β, where
β = b2, and analyze singularities in β plane. Using (11)
we can write down the integral over the contour C around
a positive axis in the β plane:

F ∗(W 2, t, Q2) = −i
W 2

2π2

∫
C

F ∗(W 2, β,Q2)K0(
√

tβ)dβ,

(38)

where K0 is the modified Bessel function and the variable
W 2 was used instead of the variable s. The contour C
can be closed at infinity and the value of the integral will
then be determined by the singularities of the function
F ∗(W 2, β,Q2) in the complex β plane (Fig. 7), where

F ∗(W 2, β,Q2) = ω(β,Q2)
U(W 2, β)

1 − iU(W 2, β)
.

With the explicit expressions for the functions U and
ω we conclude that the positions of the poles which are
determined by solutions of the equation

1 − iU(W 2, β) = 0

are located at

βn(W 2) =
[
R(W 2) + i

ξ

M
πn

]2
, n = ±1,±3, . . . ,

where M = m̃QnV +mQnh and

R(W 2) =
ξ

M
ln

[
gN

(
W 2

mQ
2

)N/2
]
.

The location of the poles does not depend on the virtuality
Q2.

Besides the poles the function F ∗(W 2, β,Q2) has a
branching point at β = 0 and

disc F ∗(W 2, β,Q2)

=
{(

disc[ω(β,Q2)U(W 2, β)] − iU(W 2, β + i0)

×U(W 2, β − i0)disc ω(β,Q2)
)/(

[1 − iU(W 2, β + i0)]

×[1 − iU(W 2, β − i0)]
)}

,

i.e.

disc F ∗(W 2, β,Q2) � i disc ω(β,Q2),

since at W 2 → ∞ the function U(W 2, β) → ∞ at fixed β.
As a result the function F ∗(W 2, t, Q2) can be represented
as a sum of pole and cut contributions, i.e.

F ∗(W 2, t, Q2) = F ∗
p (W

2, t, Q2) + F ∗
c (W

2, t, Q2).

The pole and cut contributions are decoupled dynamically
when W 2 → ∞. The contribution of the poles determines
the amplitude F ∗(W 2, t, Q2) in the region |t|/W 2 � 1 and
can be written in the form of a series:

F ∗(W 2, t, Q2) � iW 2(W 2)λV (Q2)/2 (39)

×
∑

n=±1,±3,...

exp
{
iπn
N

λV (Q2)
}√

βnK0(
√

tβn).

At moderate values of −t when −t ≥ 1 (GeV/c)2 the
amplitude (39) leads to the Orear type behavior of the
differential cross section which is similar to (32) for the
on-shell amplitude, i.e.

dσV

dt
∝ exp

[
−2πξ

M

√−t

]
. (40)

Note that at small t the behavior of the differential
cross section is complicated. The oscillating factors

exp
{
iπn
N

λV (Q2)
}

,

absent in the on-shell scattering amplitude [14], here play
a role.

At large t the poles contributions are negligible and the
contribution from the cut at β = 0 is the dominating one.
It appears that the function F ∗

c (W
2, t, Q2) does not de-

pend on energy and the differential cross section depends
on t in a power-like way,

dσV

dt
� G̃(Q2)

(
1 − ξ̄2(Q2)t

m̃2
Q

)−3

. (41)

Therefore for large values of −t (−t � m̃2
Q/ξ̄2(Q2)) we

have a simple (−t)−3 dependence of the differential cross
section. This dependence is very distinct from the cor-
responding behavior of the differential cross section of
the on-shell scattering [14] which approximates the quark
counting rule [32] due to off-shell unitarity effects. It is
worth noting that the ratio of the two differential cross-
sections for the production of the vector mesons V1 and
V2 does not depend on the variables W 2 and t at large
values of t.

6 Impact parameter picture

The results described above rely on the off-shell unitarity
and the Q2-dependence of the constituent quark interac-
tion radius. It is useful to consider the impact parameter
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Fig. 8. The impact parameter profile of the scattering ampli-
tude

picture to get insight in the physical origin of this Q2-
dependence. The impact parameter analysis of the exper-
imental data was a particular tool for the detection of
the unitarity effects in hadronic reactions [33] and, as was
proposed in [20], a similar technique can be used in diffrac-
tive DIS. The impact parameter profile of the amplitude is
peripheral when ξ(Q2) increases with Q2 (Fig. 8). The de-
pendence on the virtuality of the constituent quark inter-
action radius was assumed and this dependence appeared
to be in a qualitative agreement with the experimental
data. It was demonstrated then that the increasing depen-
dence of the constituent quark interaction radius with vir-
tuality implies an increasing Q2-dependence of the expo-
nent λ(Q2). The relation between ξ(Q2) and λ(Q2) implies
in its turn a saturation of the Q2-dependence of λ(Q2) at
large values of Q2. The reason for the increase of the con-
stituent quark interaction radius with virtuality should
have a dynamical nature, and it could originate from the
emission of additional qq̄-pairs in the non-perturbative
structure of a constituent quark. In the present approach
the constituent quark consists of a current quark and a
cloud of quark–antiquark pairs of different flavors [14]. It
was shown that the available experimental data imply a
lnQ2-dependence for the radius of this cloud.

The peripheral profile of the amplitude in its turn can
result from the increasing role of the orbital angular mo-
mentum of the quark–antiquark cloud when the virtual
particles are considered. The generation of a q̄q-pairs cloud
could be considered in analogy with the theory of super-
conductivity. It was proposed [34] to push this analogy
further and consider an anisotropic extension of the the-
ory of superconductivity which seems to match well the
above non-perturbative picture for a constituent quark.
The studies [35] of that theory show that the presence
of anisotropy leads to axial symmetry of pairing correla-
tions around the anisotropy direction l̂ and to particle cur-
rents induced by the pairing correlations. In other words,
this means that a particle of the condensed fluid is sur-
rounded by a cloud of correlated particles (“hump”) which
rotate around it with the axis of rotation l̂. A calculation
of the orbital momentum shows that it is proportional to
the density of the correlated particles. The value of the
orbital momentum contribution to the spin of the con-
stituent quark can be estimated according to the relation
between the contributions of current quarks to the pro-

ton spin and the corresponding contributions of current
quarks to the spin of the constituent quarks and that of
the constituent quarks to the proton spin.

It is evident that the results of the impact parameter
analysis are in favor of the increasing role of the orbital
angular momenta with virtuality.

7 Conclusion

We considered the limitations the unitarity provides for
the γ∗p total cross-sections and geometrical effects in the
model dependence of σtot

γ∗p. In particular, it was shown
that the Q2-dependent constituent quark interaction ra-
dius can lead to a non-trivial, asymptotical result: σtot

γ∗p ∼
(W 2)λ(Q2), where λ(Q2) will be saturated at large values
of Q2. This result is valid when the interaction radius of
the virtual constituent quark is increasing with the vir-
tuality Q2. The data for the structure functions at low
values of x continue to demonstrate the increasing total
cross-section of γ∗p interactions, and therefore we can con-
sider it as a reflection of the increasing with virtuality of
the interaction radius of the constituent quark. Thus, we
have shown that the power-like parameterization of the
experimental data σtot

γ∗p ∼ (W 2)λ(Q2) with Q2-dependent
exponent can have a physical ground and should not be
regarded merely as a convenient way to represent the data.
Other scenarios which are consistent with unitarity have
also been discussed. The general conclusion is that uni-
tarity itself does not lead to a saturation at x → 0, i.e.
a slow down of the power-like energy dependence of σtot

γ∗p

and a transition to the energy behavior consistent with the
Froissart–Martin bound valid for the on-shell scattering.

In elastic vector meson electroproduction processes the
mass and Q2 dependences of the integral cross section of
vector meson production are related to the dependence of
the interaction radius of the constituent quark Q on the
respective quark mass mQ and its virtuality Q2. The be-
havior of the differential cross sections at large t is to a
large extent determined by the off-shell unitarity effects.
The smooth power-like dependence on t is predicted. New
experimental data would be essential for the discrimina-
tion of the model approaches and studies of the inter-
play between the non-perturbative and perturbative QCD
regimes.
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